4,092 research outputs found

    Limb amputations in fixed dystonia: a form of body integrity identity disorder?

    Get PDF
    Fixed dystonia is a disabling disorder mainly affecting young women who develop fixed abnormal limb postures and pain after apparently minor peripheral injury. There is continued debate regarding its pathophysiology and management. We report 5 cases of fixed dystonia in patients who sought amputation of the affected limb. We place these cases in the context of previous reports of patients with healthy limbs and patients with chronic regional pain syndrome who have sought amputation. Our cases, combined with recent data regarding disorders of mental rotation in patients with fixed dystonia, as well as previous data regarding body integrity identity disorder and amputations sought by patients with chronic regional pain syndrome, raise the possibility that patients with fixed dystonia might have a deficit in body schema that predisposes them to developing fixed dystonia and drives some to seek amputation. The outcome of amputation in fixed dystonia is invariably unfavorable

    The AIMSS Project – III. The Stellar Populations of Compact Stellar Systems

    Get PDF
    In recent years, a growing zoo of compact stellar systems (CSSs) have been found whose physical properties (mass, size, velocity dispersion) place them between classical globular clusters (GCs) and true galaxies, leading to debates about their nature. Here we present results using a so far underutilized discriminant, their stellar population properties. Based on new spectroscopy from 8–10m telescopes, we derive ages, metallicities, and [α/Fe] of 29 CSSs. These range from GCs with sizes of merely a few parsec to compact ellipticals (cEs) larger than M32. Together with a literature compilation, this provides a panoramic view of the stellar population characteristics of early-type systems. We find that the CSSs are predominantly more metal rich than typical galaxies at the same stellar mass. At high mass, the cEs depart from the mass–metallicity relation of massive early-type galaxies, which forms a continuous sequence with dwarf galaxies. At lower mass, the metallicity distribution of ultracompact dwarfs (UCDs) changes at a few times 107 M⊙, which roughly coincides with the mass where luminosity function arguments previously suggested the GC population ends. The highest metallicities in CSSs are paralleled only by those of dwarf galaxy nuclei and the central parts of massive early types. These findings can be interpreted as CSSs previously being more massive and undergoing tidal interactions to obtain their current mass and compact size. Such an interpretation is supported by CSSs with direct evidence for tidal stripping, and by an examination of the CSS internal escape velocities

    Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip

    Get PDF
    Vascular plants rely on differences of osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as M\"unch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems to occur via passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the nonlinear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of M\"unch transport, where phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with the hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    Global-Vector Representation of the Angular Motion of Few-Particle Systems II

    Full text link
    The angular motion of a few-body system is described with global vectors which depend on the positions of the particles. The previous study using a single global vector is extended to make it possible to describe both natural and unnatural parity states. Numerical examples include three- and four-nucleon systems interacting via nucleon-nucleon potentials of AV8 type and a 3α\alpha system with a nonlocal αα\alpha\alpha potential. The results using the explicitly correlated Gaussian basis with the global vectors are shown to be in good agreement with those of other methods. A unique role of the unnatural parity component, caused by the tensor force, is clarified in the 01−0^-_1 state of 4^4He. Two-particle correlation function is calculated in the coordinate and momentum spaces to show different characteristics of the interactions employed.Comment: 39 pages, 4 figure

    Risk stratification by pre-operative cardiopulmonary exercise testing improves outcomes following elective abdominal aortic aneurysm surgery : a cohort study

    Get PDF
    Background: In 2009, the NHS evidence adoption center and National Institute for Health and Care Excellence (NICE) published a review of the use of endovascular aneurysm repair (EVAR) of abdominal aortic aneurysms (AAAs). They recommended the development of a risk-assessment tool to help identify AAA patients with greater or lesser risk of operative mortality and to contribute to mortality prediction. A low anaerobic threshold (AT), which is a reliable, objective measure of pre-operative cardiorespiratory fitness, as determined by pre-operative cardiopulmonary exercise testing (CPET) is associated with poor surgical outcomes for major abdominal surgery. We aimed to assess the impact of a CPET-based risk-stratification strategy upon perioperative mortality, length of stay and non-operative costs for elective (open and endovascular) infra-renal AAA patients. Methods: A retrospective cohort study was undertaken. Pre-operative CPET-based selection for elective surgical intervention was introduced in 2007. An anonymized cohort of 230 consecutive infra-renal AAA patients (2007 to 2011) was studied. A historical control group of 128 consecutive infra-renal AAA patients (2003 to 2007) was identified for comparison. Comparative analysis of demographic and outcome data for CPET-pass (AT ≥ 11 ml/kg/min), CPET-fail (AT < 11 ml/kg/min) and CPET-submaximal (no AT generated) subgroups with control subjects was performed. Primary outcomes included 30-day mortality, survival and length of stay (LOS); secondary outcomes were non-operative inpatient costs. Results: Of 230 subjects, 188 underwent CPET: CPET-pass n = 131, CPET-fail n = 35 and CPET-submaximal n = 22. When compared to the controls, CPET-pass patients exhibited reduced median total LOS (10 vs 13 days for open surgery, n = 74, P < 0.01 and 4 vs 6 days for EVAR, n = 29, P < 0.05), intensive therapy unit requirement (3 vs 4 days for open repair only, P < 0.001), non-operative costs (£5,387 vs £9,634 for open repair, P < 0.001) and perioperative mortality (2.7% vs 12.6% (odds ratio: 0.19) for open repair only, P < 0.05). CPET-stratified (open/endovascular) patients exhibited a mid-term survival benefit (P < 0.05). Conclusion: In this retrospective cohort study, a pre-operative AT > 11 ml/kg/min was associated with reduced perioperative mortality (open cases only), LOS, survival and inpatient costs (open and endovascular repair) for elective infra-renal AAA surgery

    DNA metabarcoding reveals high relative abundance of trunk disease fungi in grapevines from Marlborough, New Zealand

    Get PDF
    Grapevine trunk diseases (GTDs) are a threat to grape production worldwide, with a diverse collection of fungal species implicated in disease onset. Due to the long-term and complex nature of GTDs, simultaneous detection of multiple microbial species can enhance understanding of disease development. We used DNA metabarcoding of ribosomal internal transcribed spacer 1 (ITS1) sequences, supported by specific PCR and microbial isolation, to establish the presence of trunk pathogens across 11 vineyards (11–26 years old) over three years in Marlborough, the largest wine producing region in New Zealand. Using a reference database of trunk pathogen sequences, species previously associated with GTD, such as Cadophora luteo-olivacea, Diplodia seriata, Diplodia mutila, Neofusicoccum australe, and Seimatosporium vitis, were identified as highly represented across the vineyard region. The well-known pathogens Phaeomoniella chlamydospora and Eutypa lata had especially high relative abundance across the dataset, with P. chlamydospora reads present between 22 and 84% (average 52%) across the vineyards. Screening of sequences against broader, publicly available databases revealed further fungal species within families and orders known to contain pathogens, many of which appeared to be endemic to New Zealand. The presence of several wood-rotting basidiomycetes (mostly Hymenochaetales) was detected for the first time in the Marlborough vineyard region, notably, the native Inonotus nothofagii which was present at 1–2% relative abundance in two vineyards

    Estimation in a multiplicative mixed model involving a genetic relationship matrix

    Get PDF
    Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments
    • …
    corecore